# СТАНОК ТОЧИЛЬНО-ШЛИФОВАЛЬНЫЙ

Модель:

ТШС-300 ТШС-300.1

ТШС-400 ТШС-400.1



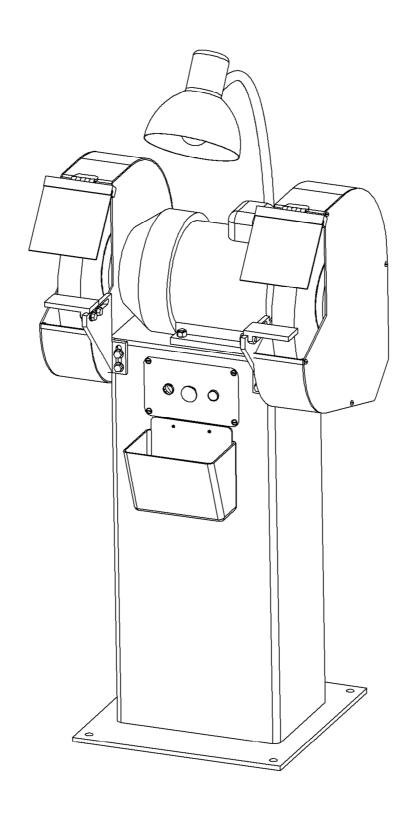



Рис. 1 Общий вид станка.

## 2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКА

- 2.1 Техническая характеристика (табл. 1)
- 2.2 Базовые и присоединительные размеры
- 2.2.1 Крепление шлифовального круга (рис.2)

| Наименование показателя           | ТШС-300          | ТШС-400          |
|-----------------------------------|------------------|------------------|
| 1. Режущий инструмент по ГОСТ     |                  |                  |
| 2424-83 на керамической связке    |                  |                  |
| 1.1 Наружный диаметр круга, мм    | 300              | 400              |
| 1.2 Высота круга, мм              | 1050             | 50               |
| 1.3 Посадочный диаметр, мм        | 76               | 127              |
| 1.4 Диаметр изношенного круга,    |                  |                  |
| MM                                | 150              | 240              |
| 1.5 Класс неуравновешенности      | кл. 2 или кл. 1  | кл. 2 или кл. 1  |
| 2. Высота центров кругов от       |                  |                  |
| основания, мм                     | 952              | 974              |
| 3. Частота вращения вала, мин1    | 1500             | 1000             |
| 4. Максимальная скорость резания, |                  |                  |
| M/C                               | 23,5             | 20               |
| 5. Мощность электродвигателя, кВт | 2,2              | 3                |
| 6. Ток питающей сети              | переменный       | переменный       |
|                                   | трехфазный 50Гц, | трехфазный 50Гц, |
|                                   | 380 B            | 380 B            |
| 7. Габаритные размеры станка, мм  |                  |                  |
| 7.1 Длина                         | 570              | 700              |
| 7.2 Ширина                        | 450              | 560              |
| 7.3 Высота                        | 1153             | 1270             |
| 8. Масса, кг.                     | 102              | 170              |

2.2.2 Крепление станка (рис. 3)

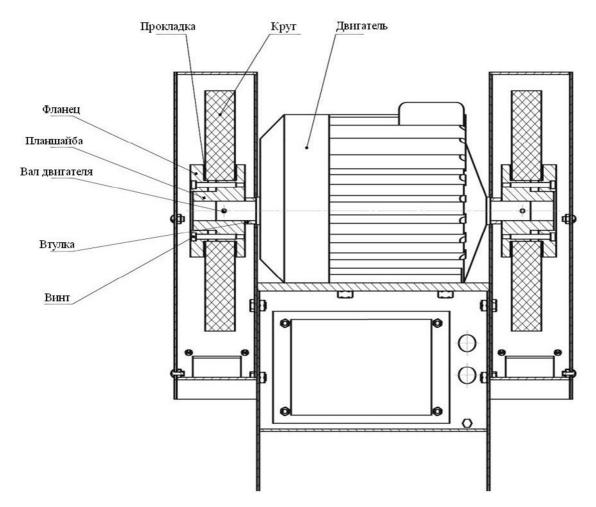
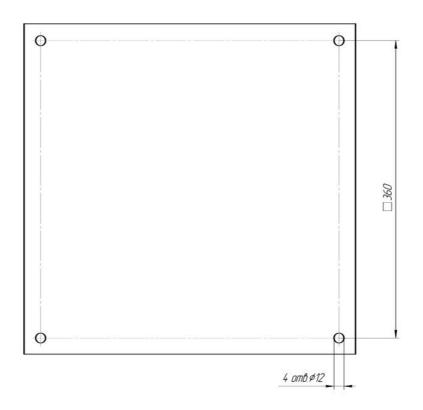




Рис. 2 Крепление шлифовального круга.



ТШС-300

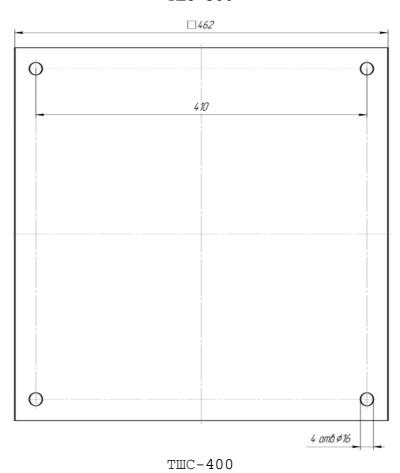



Рис. 3 Опорная поверхность тумбы, вид снизу.

#### 3. КОМПЛЕКТНОСТЬ

Станок поставляется в собранном виде, упаковывается в ПЭ пленку или в деревянный ящик. В комплект и стоимость станка входят защитные экраны 2шт., светильник местного освещения 1шт. К станку прилагается руководство по эксплуатации 1экз. Станки ТШС-300.1 и ТШС-400.1 комплектуется устройством отключения электродвигателя при поднятии защитного экрана. Устройство правки шлифовального круга поставляется по требованию заказчика и за отдельную плату.

#### 4. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

Безопасность труда на станке обеспечивается его изготовлением в соответствии с требованиями ГОСТ 12.2.009-99, ГОСТ МЭК 60204-1-2007; ГОСТ Р 52588-2011. Требования безопасности труда при эксплуатации станка устанавливаются соответствующими разделами руководства и настоящим разделом.

# ВНИМАНИЕ! НЕ ПРИСТУПАТЬ К РАБОТЕ НА СТАНКЕ, НЕ ОЗНАКОМИВШИСЬ С СОДЕРЖАНИЕМ ДАННОГО РУКОВОДСТВА.

- 4.1 К работе на станке должны допускаться только лица соответствующей профессии, специальности и квалификации, прошедшие инструктаж и обучение.
- 4.2 Лица, обслуживающие станок, должны знать его устройство и требования по технике безопасности.
  - 4.3 Эксплуатация неисправного станка ЗАПРЕЩАЕТСЯ.
  - 4.4 Наладка или исправление дефектов при работающем станке не допускаются.
  - 4.5 Срок службы защитного экрана не более 2 лет.
  - 4.6 Перед началом работы необходимо проверить:
- исправность заземления, надежность крепления кожухов, подручников и режущего инструмента, исправность подводящего кабеля и вилки, направление вращения кругов, работу станка на холостом ходу в течение 5 минут.
- 4.7 Не допускается эксплуатация станка в помещениях со взрывоопасной и химически активной средой.
- 4.8 Не допускается работа на станке без защитных очков при невозможности установки по тем или иным причинам защитного экрана.

ВНИМАНИЕ! ШЛИФОВАЛЬНЫЙ КРУГ ПОСТАВЛЯЕТСЯ ПРОВЕРЕННЫМ НА РАЗРЫВ. ОДНАКО ПЕРЕД ПЕРВОНАЧАЛЬНЫМ ЗАПУСКОМ СТАНКА НЕОБХОДИМО ОБЯЗАТЕЛЬНО ПРОИЗВЕСТИ ПОВТОРНУЮ ПРОВЕРКУ ШЛИФОВАЛЬНОГО КРУГА НА РАЗРЫВ.

# ВНИМАНИЕ! ПРИ ПРИОБРЕТЕНИИ СТАНКА БЕЗ СВЕТИЛЬНИКА МЕСТНОГО ОСВЕЩЕНИЯ ЗАКАЗЧИК ОБЯЗАН ОБЕСПЕЧИТЬ ОСВЕЩЕННОСТЬ В ЗОНЕ ОБРАБОТКИ СТАНКА 2000 ЛК.

- 4.9 Пылесборник в нижней части кожухов необходимо периодически очищать от абразивной пыли.
  - 4.10 При ремонтных работах необходимо отключать вводной автомат.
- 4.11 Подручники должны устанавливаться так, чтобы верхняя точка соприкосновения изделия со шлифовальным кругом находилась выше горизонтальной плоскости, проходящей через центр круга, но не более чем на 10 мм.

Зазор между краем подручника и шлифовальным кругом должен быть меньше половины толщины шлифуемого изделия, но не более 3 мм.

- 4.12 Заказчик обязан обеспечить концентрацию вредных для здоровья человека веществ в рабочей зоне не более предельно допустимых норм по ГОСТ 12.1 005-76.
- 4.13 Освещенность от светильников общего освещения в зоне обработки станков должна составлять не менее 300 лк в горизонтальной плоскости.

#### 5. СОСТАВ СТАНКА

- 1. Тумба
- 2. Защитный экран
- 3. Кожух левый, кожух правый
- 4. Крышка
- 5. Подручник
- 6. Подручник
- 7. Кронштейн
- 8. Кронштейн
- 9. Коробка
- 10. Переключатель
- 11. Кнопка СТОП
- 12. Кнопка ПУСК
- 13. Светильник
- 14. Электродвигатель

## 6. УСТРОЙСТВО И РАБОТА СТАНКА

6.1 Изображение станка с обозначением составных частей и основных деталей приведено на рис. 4.

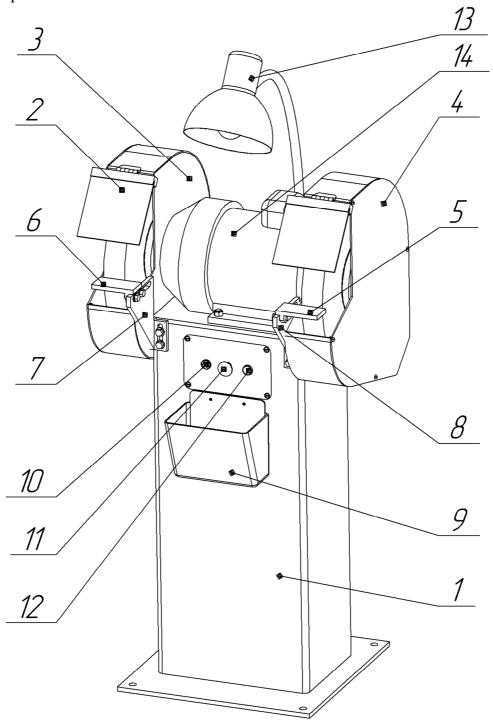



Рис. 4 Общая компоновка станка.

#### 6.2 Общая компоновка станков (Рис. 4).

Станок мод. ТШС-300/ТШС-400 состоит из сварной тумбы 1, на которой установлен электродвигатель. К тумбе крепятся винтами два защитных кожуха.

Установка подручников 5 и 6 в требуемом положении производится перемещением их в пазах кронштейнов 7 и 8, которые, в свою очередь, крепятся к подставке (тумбе) и могут перемещаться относительно нее. На валу электродвигателя имеются планшайбы для установки кругов. Крепление кругов см. рис. 2. Перечень органов управления и графических символов приведен в табл. 2.

Таблица 2

| Органы управления и их назначение | Символ | Смысловые значения |
|-----------------------------------|--------|--------------------|
| Переключатель двухпозиционный     |        |                    |
| Кнопка «Стоп»                     |        |                    |
| Кнопка «Пуск»                     | /4     | напряжение         |
|                                   | / * \  |                    |
|                                   | 7 01   |                    |
|                                   |        |                    |

#### 7. ЭЛЕКТРООБОРУДОВАНИЕ

#### 7.1 Общие сведения.

На станках установлен электродвигатель M1, работающий в режиме трехфазного включения, вводный автомат QF1, пускатель электромагнитный КМ1, кнопка пуск SB2, кнопка стоп SB1. Вся аппаратура размещена в нише подставки (тумбы) на панелях. Ввод питающих проводов производится через отверстие в задней стенке подставки (тумбы) к вводному выключателю QF1.

#### 7.2 Первоначальный пуск.

Сечение питающих проводов должно быть не менее 1,0 мм2 медных или 2,5 мм2 алюминиевых.

7.3 Описание работы в режиме трехфазного включения (рис. 5). Включением вводного выключателя QF1 подается напряжение на станок. Нажатием кнопки SB2 «Пуск» включается магнитный пускатель КМ1 и подает напряжение на обмотки трехфазного электродвигателя.

Остановка электродвигателя производится нажатием на кнопку SB1 «Стоп». При этом происходит отключение магнитного пускателя КМ1.

Защита электрооборудования от перегрузки производится электротепловым реле FP1.

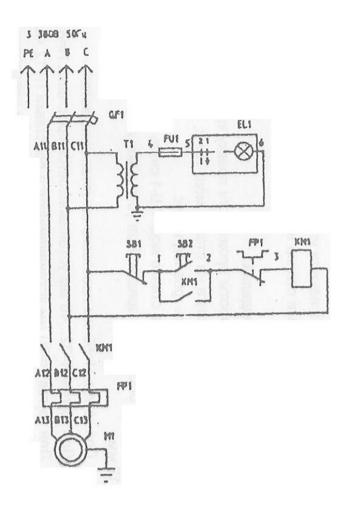



Рис. 5. Схема электрическая принципиальная

| п           | ITT                  | <b>I</b>      |
|-------------|----------------------|---------------|
| Поз.        | Наименование         | Примечание    |
| Обозначение |                      |               |
|             |                      |               |
| EL1         | Лампа                | к светильнику |
|             |                      |               |
| FP1         | Реле электротепловое |               |
| FU1         | Предохранитель       |               |
|             |                      |               |
| KM1         | Пускатель            |               |
|             | электромагнитный     |               |
| λ / 1       | O - A IID            | 200D 50 E     |
| M1          | Электродвигатель АИР | 380В. 50 Гц.  |
|             | 90L4УЗ 2.2 кВт       | 1500 мин      |
|             | Электродвигатель АИР | 380В. 50 Гц.  |
|             | 112L4УЗ 3 кВт        | 1000 мин      |
| QF1         | Выключатель          |               |
| SB1         | Выключатель          | Стоп          |
| SB2         | Выключатель          | Пуск          |
|             |                      |               |
| T1          | Трансформатор        |               |
|             | 1                    | 1             |

#### 8. ПОРЯДОК УСТАНОВКИ СТАНКА

- 8.1 Распаковать станок.
- 8.2 Снять антикоррозионное покрытие путем протирания ветошью, смоченной маловязким маслом или уайт-спиритом с последующим протиранием насухо.
  - 8.3 Установить станок на место крепления и закрепить тумбу четырьмя анкерными болтами М10.
  - 8.4 Монтаж электрооборудования.
  - 8.4.1 Произвести внешний осмотр электрооборудования:
  - счетчик электроэнергии должен быть установлен не ниже, чем на 10А.
- для получения заключения о возможности эксплуатации станка при существующей проводке владелец станка обязан обратиться в территориальный орган энергонадзора и получить разрешение на подключение станка. Перед включением станка, работающего в режиме трехфазного переменного тока, необходимо подключить его к контуру заземления. Сопротивление заземления не должно превышать 0,10м.
  - 8.4.2 Подключить станок к электросети.

Для этого снять панель управления, отсоединить вводной выключатель QF1 и подсоединить питающие провода сети к водным клеммам выключателя. Заземляющий провод питающей сети подсоединить к заземляющей клемме внутри ниши подставки (тумбы) станка (PE).

- 8.4.3 Произвести пробный пуск электродвигателя кратковременным включением его в сеть без нагрузки.
- 8.4.4 Проверить направление вращения кругов. При необходимости поменять фазировку электродвигателя.

#### 9. ПОРЯДОК РАБОТЫ

- 9.1 Для пуска станка необходимо повернуть двухпозиционный выключатель в положение I, затем нажать кнопку «Пуск» на панели управления станка.
- 9.2 Для остановки станка нажать на красную кнопку «Стоп» на панели управления станка.
  - 9.3 Обработка изделий.

Перед началом работы произвести правку кругов.

9.4 Для смены круга на станке снять крышку кожуха, отвернуть шесть винтов М6 фланца (см. рис.2), снять фланец и круг.

Для кругов Н=50 мм проставка не устанавливается;

Для кругов H=32...40 мм устанавливается проставка H=8 мм;

Для кругов H=20 мм устанавливаются проставки H=12 мм;

Для кругов H=10... 16 мм устанавливаются обе проставки.

9.5 Для подключения пылеотсасывающего агрегата на станке имеется разъем крепления патрубка (см. рис.6), разъемы расположены на задних стенках кожухов;

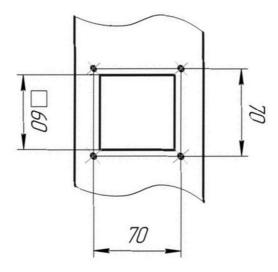



Рис. 6. Разъем крепления патрубка пылеотсасывающего аппарата.

# 10.ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ Таблица 3

| Наименование<br>неисправности                               | Вероятная причина                                                                | Метод устранения                                                                 |
|-------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1. При запуске электродвигатель гудит, не набирает обороты. | Понизилось напряжение. Обрыв в схеме подключения Неисправность электродвигателя. | Выяснить причину и устранить. Устранить обрыв.                                   |
| 2. Вращающийся электродвигатель гудит и перегревается.      | 2.1. Межвитковое замыкание или замыкание между обмотками.                        | Ремонт электродвигателя или его замена. Ремонт обмотки.                          |
| 3.Электродвигатель внезапно остановился во время работы.    | Отсутствие напряжения в сети.<br>Неполадки в пусковой аппаратуре.                | Устранить причины падения напряжения. Устранить неполадки в пусковой аппаратуре. |
| 4. Стук в подшипниках двигателя.                            | 4.1. Повреждение подшипников.                                                    | Заменить подшипники.                                                             |

#### 11. ОСОБЕННОСТИ РАЗБОРКИ И СБОРКИ ПРИ РЕМОНТЕ

- 11.1 В случае разборки станка обязательно отключить его от сети.
- 11.2 Данные о приборах и приспособлениях, применяемых при ремонте. Специальных приборов и приспособлений, применяемых при ремонте станка, не

требуется.

#### 12. СВЕДЕНИЯ О ПРИЕМКЕ

| 12.1 Нормы уровня шума в соответствии с ГОСТ 12.1.003-83.  |
|------------------------------------------------------------|
| Уровень звука на рабочем месте оператора:                  |
| допустимый — 80 дБА                                        |
| фактический —                                              |
| 12.2 Свидетельство о выходном контроле электрооборудования |
| Наименование станка — точильно-шлифовальный                |

Порядковый номер по системе нумерации предприятия-изготовителя

\_\_\_\_\_

Питающая сеть:

напряжение 380В, род тока —переменный, частота — 50 Гц

Цепь управления:

напряжение 380В, род тока — переменный

Номинальный ток станка - 5А ТШС-300

- 8А ТШС-400

Номинальный ток плавких вставок предохранителей питающей силовой цепи или установки тока срабатывания вводного автоматического выключателя — 10А.

### ЭЛЕКТРОДВИГАТЕЛИ

| Модель    | Обозначение | Назначение                | Тип            | Мощность, | Напряжение | Номинальный |
|-----------|-------------|---------------------------|----------------|-----------|------------|-------------|
| станка    | по схеме    |                           |                | кВт       | в сети     | ток, А      |
| ТШС-300   | M1          | Привод<br>шлиф.<br>кругов | АИР<br>90L4У3  | 2,2       | 380        | 4,5         |
| TIIIC-400 | M1          | Привод<br>шлиф.<br>кругов | АИР<br>112L4У3 | 3         | 380        | 8           |

| Испытание повышенным напряжением п    | ромышленной    | частоты В             |                        |       |
|---------------------------------------|----------------|-----------------------|------------------------|-------|
| проведено                             | ).             |                       |                        |       |
| Сопротивление изоляций проводов относ |                | и:                    |                        |       |
| Силовые цепи                          |                | Цепи                  |                        |       |
| управления                            | Мом            |                       |                        |       |
| Значение напряжения между зажимом за: | земпения (РЕ)  | и разпичными          | гочками пепи зашить:   | гне   |
| должно                                | 30MJ0MJ (1 2)  | ii pustiii iiibiitiii | TO INCIDENT GUILLING   | . 110 |
| превышать 2,6 при пропускании тока не | менее 10 А, ча | стотой 50 Гцв         | гечение 10 с через цег | ТЬ    |
| защиты.                               |                |                       |                        |       |
|                                       |                |                       | _                      |       |
| Вывод: Электродвигатели,              | -              |                       | 1 10                   |       |
| его испытания соответствуют           | у общим        | технически            | м требованиям          | И     |
| электрооборудованию станка.           |                |                       |                        |       |
|                                       |                |                       |                        |       |
|                                       |                |                       |                        |       |
| Испытания провел                      |                |                       |                        |       |
| П.                                    |                |                       |                        |       |
| Подпись                               |                |                       |                        |       |
| Пото                                  |                |                       |                        |       |
| Дата                                  |                |                       |                        |       |
| Число листов                          |                |                       |                        |       |
| 1110110 11110101                      |                |                       |                        |       |

## 12.4 Свидетельство о приемке станка

| Точильно-шлифовальный ста                   | <u>нок</u>                                                          |
|---------------------------------------------|---------------------------------------------------------------------|
| Заводской №                                 | -                                                                   |
| Соответствует стандарту                     | ТУ 3813-001-91333670-2014                                           |
| и признан годным к эксплуат<br>Дата выпуска | ации.                                                               |
| (личная подпись (оттиски личных кл          | ейм) должностных лиц предприятия, ответственных за приемку изделия) |
| 12 5                                        | Свилетельство о консервании                                         |

#### 13. ХРАНЕНИЕ И ТРАНСПОРТИРОВКА

13.1 Хранение должно осуществляться в соответствии с ГОСТ 7599-82 и ГОСТ 23170-78.

Категория условий хранения 3 (Ж 3) по ГОСТ 15150-69

Предельный срок хранения станка и принадлежностей без переконсервации — 1 год; при бестарной отгрузке — 6 месяцев.

После расконсервации хранение и эксплуатация станка должны осуществляться в соответствии с видом климатического исполнения УХЛ2 по ГОСТ 15150-69; в закрытых неотапливаемых помещениях и под навесом, в окружающей среде, которая должна быть не взрывоопасной и не содержащей агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию.

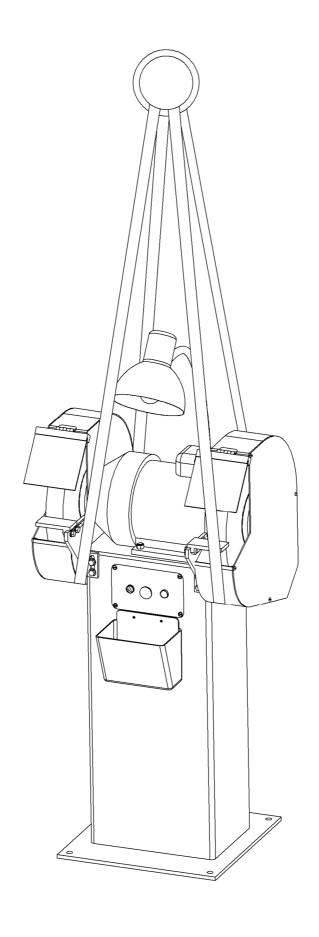



Схема транспортировки станка.

## 14.УКАЗАНИЯ ПО ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ, ЭКСПЛУАТАЦИИ И РЕМОНТУ

- 14.1 Необходимо периодически проверять состояние пусковой аппаратуры.
- 14.2 Не реже одного раза в два месяца производить чистку электродвигателя, проверять надежность его крепления.
- 14.3 Смазка подшипников электродвигателя заложена на весь период их работы.

#### 15. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие станков точильно-шлифовальных мод. ТШС-300/ТШС-400 установленным требованиям при соблюдении потребителем условий транспортирования, хранения, монтажа, эксплуатации, технического обслуживания и ремонта.

Гарантийный срок эксплуатации — 12 месяцев. Начало гарантийного срока исчисляется со дня пуска станка в эксплуатацию, но не позднее 6-и месяцев с момента отгрузки потребителю с завода-изготовителя. Гарантийная наработка каждого станка в течение гарантийного срока эксплуатации не более 6000 (шесть тысяч) часов.

Срок службы до первого капитального ремонта— 9 лет.

Ресурсы поточности в отработанных тыс. час. —18.